September 7, 2020

Physicists May Have Found a Way to ‘Untangle’ Information Trapped in a Black Hole

By elstartt1001

Black holes are gravitational monsters, squeezing gas and dust down to a microscopic point like great cosmic trash compactors. Modern physics dictates that, after being consumed, information about this matter should be forever lost to the universe. But a new experiment suggests Iphone Cases that there might be a way to use quantum mechanics to gain some insight into the interior of a black hole .

“In quantum physics, information cannot possibly be lost,” Kevin Landsman, a physics graduate student at the Joint Quantum Institute (JQI) at the University of Maryland in College Park, told Live Science. “Instead, information can be hidden, or scrambled” among subatomic, inextricably linked particles.

Landsman and his co-authors showed LG Cases and that they could measure when and how quickly information was scrambled inside a simplified model of a black hole, providing a potential peek into the otherwise impenetrable entities. The findings, which appear today (March 6) in the journal Nature, could also help in the development of quantum computers. [Stephen Hawking’s Most Far-Out Ideas About Black Holes]

Black holes are infinitely dense, infinitely small objects formed from the collapse of a giant, dead star that went supernova. Because of their massive gravitational pull, they suck in surrounding material, which disappears behind what’s known as their event horizon — the point past which nothing, including light, can escape.

In the 1970s, the famous theoretical physicist Stephen Hawking proved that black holes can shrink over their lifetimes. According to the laws of quantum mechanics — the rules that dictate the behavior of subatomic particles at tiny scales — pairs of particles spontaneously pop into existence just outside a black hole’s event horizon. One of these particles then falls into the black hole while the other is propelled outward, stealing a tiny smidgeon of energy in the process. Over extremely long timescales, enough energy is pilfered that the black hole will evaporate, a process known as Hawking radiation, as Live Science has previously reported.